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olefin-arene [2 + 2] cycloaddition15 followed by ring expan­
sion and deprotonation. Thus, the nature of the photoaddition 
pathways followed by 1 appears to be critically dependent on 
the electron-donating ability of the olefin in a way strongly 
suggestive of electron-transfer mechanisms for pyrrolidine 
ether and olefin formation. Thus, competition between addition 
and cycloaddition might be regulated at an olefin-iminium salt 
exciplex stage by the relative magnitudes of ket and &2+2> Also, 
it is quite likely that the intramolecular version of this new 
photochemical reaction1 observed for ./V-allyliminium salt 
systems also follows an electron-transfer mechanism. Further 
studies are underway to probe further the mechanistic details 
and synthetic potential of these reactions. 
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Stereochemistry of Free-Radical 
Substitution on the Peroxide Bond 

Sir: 

The stereochemical course of the SH2 reaction has been the 
subject of intensive theoretical interest for some 40 years.1-3 

Calculations suggest1,3 that homolytic substitution in simple 
three-atom systems occurs via a colinear geometry and scat­
tering experiments support the linear arrangement for deute­
rium-halogen exchange.4 Examples of experiments designed 
to provide stereochemical information about the SH2 reaction 
in more complicated organic systems are rare and studies have 
been limited to halogen atom substitution on cyclopropane 
carbon for the first row elements.5-7 Homolytic substitution 
on phosphorus8 and sulfur9 has been studied and inversion of 
configuration is generally observed, although the possibility 
of a metastable radical-addition intermediate may complicate 
the interpretation of these results. 

Carbon radical attack on the peroxide bond represents an 
important pathway in the autoxidation of olefins. For example, 
intramolecular carbon radical substitution (SHO on the per­
oxide bond initiates the unzipping of styrene-oxygen copoly­
mer.10 Because of the importance of this reaction in the oxi-

OJ* 
.0 

d\ 

dation of polymers and natural products such as polyunsatu­
rated lipids, we have initiated a study directed toward deter­
mining the stereochemical preference of carbon radical sub­
stitution on peroxide. We report here results of studies of the 
SHI reaction in which the orientation of the attacking radical 
with respect to the peroxide bond is systematically varied. This 
approach gives information about the stereochemical prefer­
ence of the substitution reaction and the results suggest that 
a "back-side attack" of the carbon radical on the peroxide bond 
is required. 

The /3-bromo peroxides 1-4 were prepared by reaction of 

Br 
Br 

0 - 0 0-0 

the corresponding mercuri bromides'' •'2 with molecular bro­
mine.13 Compounds 1 and 2 are formed as threo and erythro 
diastereomers and 4 consists of a mixture of cis and trans iso­
mers as prepared.! 2 These diastereomers can all be separated 
by high pressure liquid chromatography (HPLC) on ^-Porasil 
with 5% ethyl acetate-hexane. 

The bromo peroxides 1-4 were reacted with 1.0 equiv of 
tributyltin hydride in benzene at 25 0C with 2-5% tert-buly\ 
hyponitrite initiator present.14 For example, reaction of 1 
(threo or erythro) with 0.455 M tin hydride leads to a mixture 
of cyclic peroxide 5 and epoxy alcohol 6 in a 5:6 ratio of 82:18. 

Bu3SnH 0-0 

The epoxy alcohol 6 was formed as a 3:1 mixture of the trans 
and cis geometric isomers and this product distribution was 
independent of the stereochemistry (threo or erythro) of the 
starting /3-bromo peroxide. The results of analogous reactions 
of 2, 3, and 4 with tributyltin hydride led to mixtures of the 
corresponding cyclic peroxides and epoxy alcohols.15 The epoxy 
alcohol 7 derived from 2 rearranges under the conditions of 
analysis to the furan and pyran products 8 and 9. 7 was pre­
pared independently from the corresponding olefin and was 
converted into 8 and 9 by traces of acid. 
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Table I. Product Distribution of 0.455 M Bromo Peroxide-Tin 
Hydride Reactions 

bromo 
peroxide 

peroxide, epoxy Alcohol, 
%a,b 

1 
2 
3 
4 

82 
17 
92 

100 

18 
83 

8 
0 

" Product distributions are normalized to 100%; product accounted 
for was >80%, * Total epoxy alcohol 7 and furan and pyran 8 and 9 
were analyzed. 

Table II. ra and ksH\ Values Found for Radicals 11-14 

radical !ESuii. 

11 
12 
13 
14 

0.09 
1.05 
0.01 

<10"6 

7.5 X 104 

8.7 X 105 

1 X 104 

<1 

"r=kSHi/kH. 

r̂ OH 

In Table I is presented the product composition for reaction 
of the bromo peroxides 1-4 with 0.455 M tributyltin hydride. 
Product accountability was high (85-100%) with reactions run 
with tin hydride concentrations >0.05 M. 

The mechanism presented in Scheme I is consistent with the 
products observed.16 Further, for 1, 2, and 3 the product dis-

Scheme I 

3 +BuSn. 
3 

0-0 

IO 

0-0 

\ 

OH 0 

tribution varies as a function of Bu3SnH concentration as is 
required by this mechanism. For example, the percent yield 
of peroxide 10 derived from 3 is 92, 82, 78, 66, and 55% as the 
tin hydride concentration is reduced from 0.455 M to 0.2,0.1, 
0.05, and 0.02 M. On the other hand, no epoxy alcohol could 
be observed in the reaction of 4 with Bu3SnH with concen­
trations of hydride as low as 0.01 M. 

With the mechanism presented in Scheme I as a format, a 
kinetic expression1618 can be derived that gives a rate ratio 
of r = fcSH;/kH for the radicals 11-14 derived from 1-4. Fur­
ther, since values of k\\ are known,19 the & s H i r a t e constants 
can be calculated (see Table II). 

We suggest" that the dihedral angle </> must be 180°, or 
nearly so, for maximum SHI reactivity. For radical 12, derived 
from 2, a chair conformation20 allows an equatorial radical to 
attack the peroxide bond from the back side. For the more 
planar dioxolanyl radicals 11 and 13 (from 1 and 3), it is dif­
ficult to adopt conformations with the 180° preferred angle 
for substitution, and the rates for substitution are thus one to 
two orders of magnitudes slower than /csHi f° r 12. The endo-
cyclic radical 14 formed from the seven-membered-ring per­
oxide, 4, is constrained to attack the peroxide bond from the 
side (4> < 70-100°) rather than via the back-side pathway and, 
as a consequence, no detectable S^ reaction is observed. It 
should be noted that the transition states for SHI reaction of 
the radicals 12 and 14 are isomeric but that the rate difference 
for substitution between these two radicals is >10 6 s - 1 . This 

14 

observation supports the notion that the triangular transition 
state (side approach as in 14) is not favored1-3 and points to 
a preferential colinear, or back-side, substitution process. 
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Chemistry at Liquid-Liquid Interfaces. 
Evidence for an S N I Reaction Occurring 
at a Toluene-Water Interface1 

Sir: 

Although many types of chemical and biochemical reactions 
are believed to take place at liquid-liquid interfaces, few ex­
amples have been well documented. It is not surprising, 
therefore, that only a limited understanding exists of how re­
actions at interfaces differ from comparable reactions carried 
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